Torch - nn
For PyTorch to track operations, you need to wrap a tensor with the Variable.
You can get the tensor back with the .data attribute of the Variable.
The gradients are computed with respect to some variable zwith z.backward().
Train
import torch
from torch import nn
from torch import optim
import torch.nn.functional as F
from torch.autograd import Variablefrom torchvision import datasets, transforms
# Define a transform to normalize the data
transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
# Download and load the training data
trainset = datasets.MNIST('MNIST_data/', download=True, train=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True)
# Download and load the test data
testset = datasets.MNIST('MNIST_data/', download=True, train=False, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=True)Epoch: 1/1 Loss: 2.1246 Test accuracy: 0.4726
Epoch: 1/1 Loss: 1.5973 Test accuracy: 0.5754
Epoch: 1/1 Loss: 1.2325 Test accuracy: 0.7483
Epoch: 1/1 Loss: 0.9512 Test accuracy: 0.7622
Test
Last updated
Was this helpful?