Torch - cnn
%matplotlib inline
%config InlineBackend.figure_format = 'retina'
import numpy as np
import time
import torch
from torch import nn
from torch import optim
import torch.nn.functional as F
from torch.autograd import Variable
import helperfrom torchvision import datasets, transforms
# Define a transform to normalize the data
transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
# Download and load the training data
trainset = datasets.MNIST('MNIST_data/', download=True, train=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True)
# Download and load the test data
testset = datasets.MNIST('MNIST_data/', download=True, train=False, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=True)Epoch: 1/5.. Loss: 1.4250.. Test accuracy: 0.8135.. 0.0588 s/batch
Epoch: 1/5.. Loss: 0.4746.. Test accuracy: 0.9095.. 0.0116 s/batch
Epoch: 1/5.. Loss: 0.3003.. Test accuracy: 0.9307.. 0.0115 s/batch
...
Epoch: 5/5.. Loss: 0.0278.. Test accuracy: 0.9899.. 0.0113 s/batch
Epoch: 5/5.. Loss: 0.0205.. Test accuracy: 0.9897.. 0.0114 s/batch
Saving and loading models
Test save & load
Last updated
Was this helpful?