HandsonML 8. Dimension Reduction
1. Problems of millions of features
1.1. Solution = dimension reduction
1.2. DR techniques
1.3. High dimension v.s. low dimension
2. Projection


3. Manifold Learning
4. PCA (principle component analysis)
4.1. Preserving maximum variance -> lose less information

4.2. SVD, single value decomposition
4.3. Choosing the right number of dimensions
4.4. Reconstructing error
4.5. Other PCA
4.6. How to choose hyper-params for Unsupervised learning (e.g. kPCA)
Last updated